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Summary

Driven by a need to explore and develop propulsion systems that exceeded current computing

capabilities, NASA Glelm embarked on a novel strategy leading to the development of an

architecture that enables propulsion simulations never thought possible before. Full engine 3

Dimensional Computational Fluid Dynamic propulsion system simulations were deemed

impossible due to the impracticality of the hardware and software computing systems required.

However, with a software paradigm shift and an embracing of parallel and distributed

processing, an architecture was designed to meet the needs of future propulsion system

modeling. The author suggests that the architecture designed at the NASA Glenn Research

Center for propulsion system modeling has potential for impacting the direction of development

of affordable weapons systems currently under consideration by the Applied Vehicle Technology

Panel (AVT).

This paper discusses the salient features of the NPSS Architecture including its interface layer,

object layer, implementation for accessing legacy codes, numerical zooming infrastructure mad

its computing layer. The computing layer focuses on the use and deployment of these

propulsion simulations on parallel and distributed computing platforms which has been the focus
of NASA Ames. Additional features of the object oriented architecture that suppo_ Multi-

Disciplinary (MD) Coupling, computer aided design (CAD) access and MD coupling objects
will be discussed. Included will be a discussion of the successes, challenges ahd benefits of

implementing this architecture.

Numerical Propulsion System Simulation

Today, propulsion engineers use what are called preliminary and conceptual design codes to

numerically create and analyze commercial, military and rocket propulsion systems. Most of

these computer codes were written in the 60's and 70's and many, if not all, are written in

FORTRAN. For some time now, analyzing and building propulsion systems has been

prohibitively expensive due largely to the iterative nature of designing, analyzing and testing of

hardware before a final confignaration is achieved. In order to reduce cost, risk, time to market,

expand capability, assure accuracy to mission requirements and increase confidence in designs,

innovative ways have to be found to numerically create propulsion systems that bring the design

closer to the final configuration before hardware is ever built and tested.
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The NASA Glenn led Numerical Propulsion System Simulation (NPSS) is a project funded by

and partnered with NASA Ames targeted at impacting this need. N-PSS set out to advance the

state of the art in propulsion modeling as well as create a common architecture to numerically

model propulsion systems. NASA Ames embarked on developing the parallel and distributed

computing platforms needed by such simulations.

The current state of the art in propulsion modeling centers on the use of 0 Dimensional

preliminary and conceptual design methodology. However, NPSS wanted to look beyond the

current ways propulsion systems were designed and created. NPSS dreamed of a system that

allowed an engineer the flexibility to numerically assemble an engine using 3-DimensionaI

components or any combination of 0,1,2,3 Dimensional component codes. The "plug-n-play" or

"substitute at will" concept captures the essence of this goal. Figure 1 embodies this concept.
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With this in mind, an object-oriented architecture was designed and laid out to fuifill this vision.

The NPSS object-oriented architecture allows an engineer to numerically assemble a propulsion

system comprised of differing dimensionality component codes (Numerical Zooming), different

discipiines (MD coupling), all irrespective of the computing platforms these codes execute on

while producing results on cost effective computing platforms overnight. The first deliverable

within the NPSS Architecture is NPSS V1.0. Although V1.0 preserves the traditional

preliminary and conceptual desi_a methodology for designing engines that is the state of the art

today, it was created to move the state of the art in propulsion system modeling into the future.

As such, NPSS V1.0 is an object oriented preliminary and conceptual design code used by

aerospace engineers to predict and analyze the aero-thermodynaaic behavior of commercial jet

aircraft, miIitary, and rocket engines. However, it is more than this, as it has designed into it the

infrastructure supporting Numerical Zooming to higher dinaension codes and coupling to



differing discipline analysis. As the stateof the art in propulsionmodelingmoves into the
future away from a strict adherenceto 0 Dimensional analysistowards a mixture of 0,1,2,3
Dimensionalcodes,thesameNPSS'architectureexiststo supportthis maturity in modeling.

The NPSS architectureis pictorially representedby figure 2. The architecture is open and

extensible. To this end, the architecture exploits the capabilities of object-oriented progamming

(inheritance, polymorphism, and encapsulation) as well as modem object-oriented concepts

including frameworks, component objects, and distributed object standards.

NPSS Object Oriented Architecture
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Design Philosophy

The NPSS Architectme was designed following a hybrid object oriented design philosophy. The

early work by I. Jacobson and G. Booch were followed where appropriate and extended by

experiences "known within the NASA culture. An overall philosophy for NPSS was to view the

architecture from a leap-frogging approach, purchase fi'om the commercial sector what you

could, minimize commercial licensing and build from scratch that what you must. Whatever

benefited the project from new and innovative hardware or software was to be incorporated into

the architecture as quickly as possible without a huge development effort and without disturbing

the quality and stability of the current system. To make the advances in propulsion design, time

could not be'wasted on re-checking answers, re-writing code and re-designing entire sections of

the architecture. This was the fundamental reason the object-oriented paradigm was chosen.

Beliefs then, and proven now, demonstrate that the object oriented design methodology was

correct.



NPSSArchitecture
Referringto figure 2. above,therearefundamentallythreemain areasof the architecture.These
are:theInterfaceLayer,ObjectLayerandtheComputingLayer. Within the InterfaceLayer, a
commandanda visual interfaceexist. TheObjectLayercontainsthefundamentalengineering
specificsfor propulsionsystemsandtheappropriatesupportobjectsneededby propulsion
systemssuchasaccessto geometryandlegacyFORTRAN codesusedby many,if not all,
propulsioncompanies.Lastbutnot least,theComputingLayer existsonwhich to deploy
propulsionsystemsimulations.This lastlayer,Computing,is andhasbeenthe most dynamic

over the last ten years and continues to change about every 18-24 months.

Interface Layer

From the beginning of the architectures' development, the priorities were to get the engineering

and physics right and then add a visual interface later. Given this, the main interface to NPSS

has been a command line. However, do not assume that this is a simplistic interface to NPSS.

On the contrary, the command line and its suite of syntax are quite elegant, mature and

sophisticated. Two versions of the command interface exist:

Batch: npss [-options]filel file2...

Interactive: npss [-i][-trace][-options]fileI file2...

Contained within the filet is the actual NPSS syntax that defines the propulsion system to be

designed and analyzed. The language used here is C++ like but not pure C++. Early exposure to

pure C++ as the syntax changed the direction to create a C++ like syntax. This change allowed

an easier and early adoption of NPSS. While most engineers wanted a FORTRAN language,

many of the concepts envisioned fell victim to FORTRAN's language syntax. The syntax itself

has many features of a programming language and indeed, a feature we've added is an NPSS

syntax to C++ converter. This feature allows code first developed with the syntax to be later

compiled as part of an executable library available for later use. A sample of the syntax looks

like the following.

Model BWB {

Element FlightConditions AMB0 {...}

Element Inlet Inlet {...}

Element Fan Fan {... }

Element Compressor Compressor{..}

Element Combustor Combustor {... }

Element Turbine Turbine {... }

Element Nozzle Nozzle(... }

linkPorts ("FlightConditions.Outlet", "INLET.FI_I", "FL0", ...... );

The syntax has programming constructs such as: The ability to declare new variables that are

combinations of other variables, con_nents, If-then-else, do while's, arithmetic functions: *,/, +,

, exponentiation, logicals, >, <, =,...., etc.

Recently, a visual front end to NPSS has been under development. The visual front end

communicates with the NPSS system through the command interface as just described. An early

view of this interface is included as shown in figure 3. Visually speaking, NPSS provides the

ability to assemble and connect a propulsion system together and then execute this simulation as

well as store or archive it as necessary. It is the author's belief that in order to maintain



flexibility, maturity of NPSS and advancementto its capabilities,a visual interface and a
commandinterfacemust alwaysexist separately.Oncethe visual interfacebecomespart of a
code,a violation to the integrity of the original intentof the codehasoccurredandcanneverbe
recovered. Evenasfuture interfacesemergesuchasvoice activation,screensensingandeven
optical movementor headsup displays,in order to break off the current visual interfaceand
makeuseof thefuturistic interfaces,acommandinterfacewill needto exist.

Figure3.
Object Layer
The developmemof the object layer hasgarneredthemost attemionand development. This is
whereall thepropulsionobjectsexistbothfor airbreathingandrocketengines.Additionally, this
is whereall the infrastructureobjectsarefor moving information from one elementto another,
for accessingobject codes(FORTRAN, C, C++,...) through CORBA on other machinesand
otheraddressspaces.The numericalzooming,codecoupling and security infrastructure also
exists here as well.

Propulsion and Rocket Objects

NASA Glenn has populated this layer with airbreathing, rocket and to a lesser extent ground

based power objects. What is marquee about this architecture is that the infrastracture contained

within the NPSS syntax is the same for airbreathing, rocket and ground based power objects.

While the NASA Glenn led team came together to define what a common set of airbreathing,

rocket and ground based power objects are and defined their numeric behavior, this does not

mean that the objects' behavior and characteristics cannot be changed on demand. On the

contrary, the ability to change or extend the objects behavior is central to the use of the object-

oriented paradigm. The objects provided can be used as they are or can be changed based upon

appropriate need. Additionally, the developer is assured that the object has been tested and

proven to be accurate. So, any abnormal behavior is due solely to the new features just



introducedby the developer. The basic objects used within the NPSS Architecture for 0
Dimensionaland1Dimensionalanalysisare:

.Elements

-Primary building blocks connected together via Ports

-Perform high-level calculations

-Subelements

-Interchangeable secondary building blocks that plug into Elements or other Subelements

-Perform detailed calculations

•Flow Stations

-Responsible for thermodynamic and continuity calculations

-Access the therlnodynamic packages
-Ports

-Used to connect Elements together

-Five types (Mechanical, Fluid, Fuel, Thermal, Data)

-Directional in nature (i.e., outputs connect to inputs)
,Tables

-Organized set of numbers that relate n-dimensional inputs to one or more outputs

-Support linear and second or third order LaGrange interpolation

-Support fixed value end-points or extrapolation (linear/2nd/3rd order LaGrange)

-May be used at any location a function is called and vice-versa

Of particular note, in this object definition, is that there isn't a reference to anything related to

propulsion. The NPSS Architecture's object structure, as defined, has allowed its general usage

amongst airbreathing, rocket, fuel cell and ground based power propulsion by the writing of the

appropriate functional objects. The author believes there are more applications to come.

Zooming, Code Coupling

In order to recover the wealth of investment in current FORTRAN, C, or other codes, NPSS has

adopted and developed a Common Object Request Broker Architecture (CORBA) interface to

make it appear as though these codes are actually C++ objects within the architecture. While

NPSS cannot gain complete control over these codes, it does provide three common procedures

for inte_ation. These procedures are currently GET a variable, SET a variable, and EXECUTE

and are available no matter what the particular focus of the code you are accessing or in NPSS

terms "zooming" to. The zooming infrastructure has been successfully demonstrated between

an NPSS turbofan model and a 1 Dimensional high-pressure compressor code as pictorially

represented by figure 4. A similar zooming accomplishment has also been completed between

an NPSS Expander Cycle Engine model and a 1 Dimensional Pump code called PUMPA.
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Distributed, Parallel Computing

The basic internal communication scheme used by the NPSS Architecture for moving data across

address spaces and separate machines is through its CORBA interface. This is a point-to-point

concept of distributed computing and coupling of codes. Leveraging CORBA and its associated

Security (CORBASec) software has proven quite useful. From a parallel processing sense, the

NPSS Architecture has adopted the NASA Ames' Grid Computing software called GLOBUS.

The GLOBUS software can be thought of as a scheduler of schedulers since it is 'aware' of

scheduling software such as Load Sharing Facility (LSF,Platform Computing), Portable Batch

System (PBS,NASA Ames), Load Leveler (IBM). The N-PSS Architecture makes an

assumption that any 3 Dimensional Computational Fluid Dynamics (CFD) code, structures codes

that will be integated into an NPSS Simulation, already uses one of the above schedulers as well

as a particular message-passing library such as Parallel Virtual Machine (PVM), Message

Passing Interface (MPI) or some derivative of these. For N-PSS' needs, the Grid Computing

software GLOBUS, needed to be aware of CORBA based simulations in the same way that it is

aware of LSF, or PVM based simulations. The NPSS team has developed a CORBA interface to

the GLOBUS services to support the NPSS Architecture. NPSS' goal has been to deploy

complex propulsion simulations that can be solved in an overnight timeframe in less than fifteen

hours on cost effective computing platforms. The corresponding Architecture goal is to deploy

these subject simulations on any computing cluster with minimal to no changes to the codes.

Coupling of Codes & Geometry Application Program Interface (API)

In developing the appropriate objects to support code coupling both from a single discipline and

multi-discipline perspective, a prototyping activity was set forth through a contract. The contract

specified a to prototype the needed objects to couple a 3 Dimensional structures with a 3



Dimensionalfluid codetogetherandtherebyprovideguidanceto adesig-nthat would encompass
mostof theobjectsneededto supportcouplingof codes. OncetheNPSSproject understood
whatmadesenseto do, the teamcouldthenbegin the formal developmentof the C++ objects
andmake this part of the N-PSSArchitecture. While this work is continuing,current objects
include: singleprecisionvariableobject,structuredgrid object,structuredinterfaceobject,meta
variable object,FORTRAN characterobject,FORTRAN callableAPI, and a CORBA Object

called Foreig-nElement.

The NPSS Architecture needed a conm_on geometry API that interfaced to the current suite of

commercial CAD vendors. It was already known that differing 3 Dimensional codes acquired

their respective geometry in different ways which introduced the potential for errors in the

analysis as the geometry was not interpreted the same way by all authors of codes. To address

this issue, an activity was started with Massachusettes Institute of Technology (MIT) to create a

common interface for reading geometry from Unigraphics, ProE, CATIA as these represented

the most common CAD systems within the propulsion community NPSS worked with. The

result of this work is a library/API cailed CAPRI. if the code developer adopts the CAPRI API

then geometry from UG, ProE, CATIA and other CAD systems can be read directly. Work is

ongoing to implement the Write function. No status is provided here on the Write function.

Computing Layer

The High Performance Computing and Communication Program that funded NPSS had as one of

its goals the development of massively parallel computers with high speed networks. Knowing

this and realizing that early computing platforms of this type would be volitale, the NPSS

Arhitecture was designed to 'leap-frog' this computing technology with no or minimal penalty to

the NPSS applications. Where it was necessary for an application to port to an architecture,

NPSS intended to use CORBA to reach that application. The developers of the NPSS

Architecture wanted minimal proprietary computing presence so as to be able to jump from one

parallel or distributed computing platform as needed. The thought of porting codes to particular

architectures and then port them again all the while re-validating these codes was to be avoided.

NASA Glenn's participation in the development of parallel computers and networks focused on

cost effective clusters. Originally, a thirty-two node cluster of IBM 560's with multiple

networks was assembled from commercially available UNIX machines. These systems were

ugraded to IBM 590's but never grew beyond the original 32 nodes. Following this cluster came

a 128 node Pentium PC cluster comprised of 64 dual processor Pentium 400 Mhz systems

rulming LINUX. Both these systems were batch oriented with the resources controlled by

Platform Computing's Load Sharing Facility (LSF). A partnership arose between NASA Glenn,

Platform Computing and a commerical propulsion company to support parallel applications

within LSF and to develop a multi-cluster capability. Both these features exist within LSF today.

Currently, the NPSS project is moving to adopt the GLOBUS software that can co-exist with

LSF and has support for scheduling applications built on differing batch schedulers such as the

Portable Batch Scheduler (PBS).

Software Engineering Principles

NPSS made an assumption that in order to see its Architecture and code used within the US

Industry, adherence to an identifiable and recognizable software development process was



mandatory. Evenwithin a researchcenter,softwareengineeringprinciples have a place. In
many researchefforts,softwareengineeringpracticesarea 'post development' activity. Many

developers always seem to have time to go back and fix what they didn't have time to design for

or around from the beginning. This was not the case with NPSS. From the start, software

development plans, configuration management plans, and verification and validation plans and

design plans were developed and used. At a minimum, any software development effort should

have configuration management and some form of verification and validation at the subsystem

and full system level. Without these phases, research codes never become anything but single

user research codes. Any development effort sponsored by the AVT should include a presence

of software engineering practices as appropriate for this community.

Along with a sophisticated yet manageable software development process, NPSS adopted an

incremental release process by which bug fixes and urgently needed enhancements found their

way into smaller or incremental releases rather than waiting for full releases of the software.

Regression testing and documentation are still maintained within this incremental release process

and in fact are more manageable.

Benefits to Date of NPSS

Early indicators on the benefits of using NPSS reveal a 55% reduction in the time to perform

engine system simulation throughout the product life cycle. Additionally, expectations include a

50% improvement in business processes with partners and customers.

From zooming, a reduction factor of 10 was achieved by using the NPSS architecture to integrate

high-fidelity compressor code into a system model. What normally took two days was achieved

in two hours making a simulation do able whereas before it was possible but not practical.

Summary & Appropriateness to AVT

The words used in the theme of this AVT meeting are very similar to the words used in the goals

and approach in the development of NPSS. The AVI" theme states, "The defense of NATO

requires a new paradigm in the development and deplo)a'nent...", " essential to achieving the

cost and time reductions needed to field new and improved...". NPSS' goal is to reduce time

and cost in development of new propulsion systems while increasing confidence and reducing

risk in achieving a final desig-n. The NPSS Architecture emerged to impact airbreathing

propulsion in the ways mentioned above. However, soon after its first incremental release,

NPSS' potential use to impact space propulsion and _ound based power also was realized. The

NPSS architecture was re-used to model rockets, _ound based power systems and even fuel

cells by populating only its object layer with the behavior needed for space propulsion, _ound

based power and fuel cells. The remaining architecture was reused. The process by which

NPSS was built is noteworthy. Designing a system that combines a production phase with

prototyping and deployed on an incremental release schedule, provides for early access to fixes

and new features that ultimately lead to the stated goals of reducing risk and reducing the time to

final design. It is the opinion of the author that similar gains to AVT are available in building

Affordable Weapons systems for NATO as are now being realized within NPSS' propulsion and

power community.
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